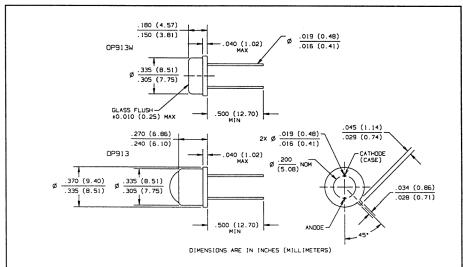


PIN Silicon Photodiodes Types OP913SL, OP913WSL

Features


- Wide or Narrow receiving angle available
- Large active area (.115" x .115")
- Fast switching time
- · Linear response vs irradiance
- Enhanced temperature range

Description

The OP913SL and OP913WSL each consist of a PIN silicon photodiode mounted in a two-leaded, TO-5 hermetically sealed package. The lensing effect of the OP913SL allows an acceptance angle of 10° measured from the optical axis to the half power point. The flat lens of the OP913WSL has an acceptance half angle of 30°. The large active area allows very low light level detection.

Replaces

OP913 and OP913W

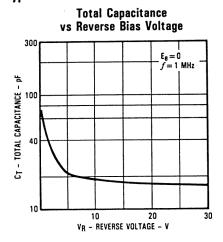
Absolute Maximum Ratings ($T_A = 25^{\circ}$ C unless otherwise noted)

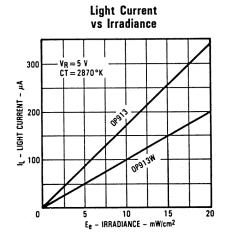
- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (2) Derate linearly 1.5 mW/° C above 25° C.
- (3) Junction temperature maintained at 25° C.
- (4) Light source is an unfiltered tungsten bulb operating at CT = 2870 K or equivalent infrared source.
- (5) At any particular wavelength the flux responsivity, R0, is the ratio of the diode photocurrent to the radiant flux producing it. R0 is related to quantum efficiency by:

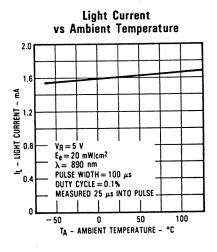
$$R_{\Theta} = \eta q \left(\frac{\lambda}{1240} \right)$$

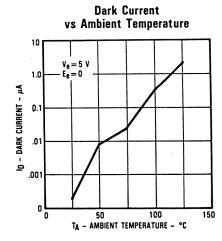
Where ηq is the quantum efficiency in electrons per photon and λ is the wavelength in nanometers. Thus at 900 nm, 0.60 A/W corresponds to a quantum efficiency of 83%.
(6) NEP is the radiant flux at a specified wavelength, required for unity signal-to-noise ratio normalized for bandwidth.

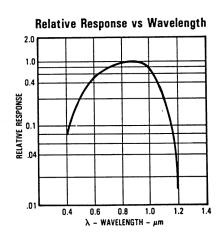
$$\text{NEP} = \frac{I_{\text{N}}/\sqrt{\Delta f}}{\text{R}_{\Theta}} \qquad \qquad \text{where } I_{\text{N}}/\sqrt{\Delta f} \quad \text{is the bandwidth} \\ \qquad \qquad \qquad \text{normalized shot noise}.$$


NEP calculation is made using responsivity at peak sensitivity wavelength, with spot noise measurement at 1000 Hz in a noise bandwidth of 6 Hz. $(\lambda, f, \Delta f) = (\lambda p, 1000 \text{ Hz}, 6 \text{ Hz})$.


Types OP913SL, OP913WSL


Electrical Characteristics (T_A = 25° C unless otherwise noted)


SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
ΙL	Reverse Light Current	OP913SL OP913WSL	120 40			μA μA	$V_R = 5 \text{ V, } E_e = 5 \text{ mW/cm}^{2(3)(4)}$
lD	Reverse Dark Current				25	nA	$V_R = 10 \text{ V}, E_e = 0^{(3)}$
Vcc	Open Circuit Voltage	OP913SL OP913WSL		400 300		mV mV	$E_e = 5 \text{ mW/cm}^{2(4)}$
Isc	Short Circuit Current	OP913SL OP913WSL	120 40			μA μA	$E_e = 5 \text{ mW/cm}^{2(4)}$
V _{(BR)R}	Reverse Breakdown Voltage		32			V	I _R = 100 μA
Ст	Total Capacitance	OP913SL OP913WSL			150 150	pF pF	V _R = 0, E _e = 0, f = 1 MHz
ton, toff	Turn-On Time, Turn-Off Time	OP913SL OP913WSL		50 50		ns ns	VR = 10 V, R _L = 1 kΩ


Typical Performance Curves

